
Data Access Prediction Architectures (DAPA)
The Parallel Vector Access Solution (DAPA/Vector)

(C) Information Technology Group
http://www.itgroup.ro

Introduction

Most of today’s software applications share a common characteristic: the input/output data bandwidth 
is order(s) of magnitude smaller than the bandwidth required by the underlying algorithm sub-
components’ communication; also, multiple (relatively) independent processing functions are used, 
which makes them well suited for a parallel Multiple Instruction Multiple Data (MIMD) approach. 
Examples to illustrate this affirmation can be found in typical desk-top workstation applications 
(parallel spell checking, parallel sorting, parallel database searches, etc), in specialized engineering 
software (parallel matrix computation, parallel rendering of an image, parallel simulation of a 
structure’s elements, etc), and also in communication and other DSP software (multiple channel 
processing, parallel split-spectrum processing, etc). The versatility of the MIMD approach also means 
it can implement Single Instruction Multiple Data (SIMD) algorithms by running the same program 
sequence on more processors, each accessing independently its own data structure. If the area ratio 
between the Instruction Control Unit and the Execution Units of each processor is relatively small, 
having multiple Instruction Control Units running the same sequence of operations will be a small 
price to pay for the versatility of the MIMD ensemble.

At the software level, multi-tasking and multi-threading operating systems have come with an answer 
to the parallel computing problem, while at the hardware level various attempts have been made to 
reconcile apparently exclusive conditions that are imposed on parallel architectures. The bottleneck 
traditionally associated with the MIMD paradigm is the way the system memory resources are shared. 
Parallel supercomputer architectures tried to address this problem over the years in many various 
ways, from the simple Bus-based architecture, to complex Trees, Fat Trees, Rings, Hyper-structures, 
etc. 

The parallel computing problem has also been addressed at a different level by the computer clusters 
and computer arrays approaches. In this case, sharing a common memory space between the 
processing elements (the computers) was no longer a requirement, but the approach is limited at one 
end by the communication speed between the computers inside a cluster, and at the other end by the 
processing power that can be packed in each computer. This, in turn, sends back to the multiprocessor 
computer problem that has to be resolved.

The approach outlined in this paper is based on the Data Access Prediction Architecture (DAPA) 
concept that enables very low memory conflict rates in a shared memory multiprocessor system. 
The DAPA goal and concept are described, and the Parallel Vector Access implementation 
(DAPA/Vector) is presented.

The DAPA/Vector solution has been specifically designed for vector data-based algorithms, and is 
not intended to serve as an architectural framework for general-purpose parallel machines.



A more general DAPA solution targeting list-based machines is currently under investigation, using a 
Parallel List Access implementation (DAPA/List).

DAPA Objective

The objective of the Data Access Prediction Architecture (DAPA) is defined as follows: to describe a 
very high bandwidth, multi-ported local memory, that can support N data accesses in the same 
clock cycle, without a proportional-with-N increase in the physical size of the memory module. 
Should such a memory architecture be defined, N processors could access the same physical memory 
resources without conflicting with each other, thus achieving the ultimate goal of multi-threaded 
parallel programming (as described by Fortune and Willie in "Parallelism in Random Access 
Machines", 1978): no latency, common addressing space, multi-processing.

Traditional multi-ported memories require, for a given memory size, an implementation area 
proportional with the number N of data ports. Although this solution can be viable for small, multi-
ported register files, it is very inefficient for implementing a large local memory in a multi-processor 
system. For example, a 16-port, 1Mw memory module (to be connected to 16 processors) would have 
at least the size of a normal 16Mw memory module, thus making (for most of the cases) the cost of 
such a shared memory system prohibitive. By contrast, the DAPA only introduces a fixed area 
overhead over the shared memory module, thus making it attractive especially when the size of 
local memory required by the applications to be run in parallel is relatively large.

 

DAPA Structure

The DAPA building blocks are shown in Fig.1: 

1. the Port Cache Modules, 
2. the Data Access Prediction Engines, 
3. the Main Memory Access Arbiter, 
4. the Main Memory Module, 
5. the Parallel Data Channel



Fig.1: DAPA Structure

DAPA Functionality

In order to describe the functionality of DAPA, let us assume a given processor connected to a DAPA 
port, say port #1, requests to access data at a given address in the Main Memory Module. The Read 
requests and Write requests are treated differently inside the DAPA. For the purpose of this example, 
it will be assumed a Read access request is issued. It will also be assumed that the DAPA will be set 
to work in the Packet Update Mode (the various DAPA operating modes are targeted to most 
efficiently optimize different classes of applications; a description of these modes is beyond the scope 
of this presentation). The following steps will occur:

1. First, the requested address is checked against the requesting processor port’s local cache; if the 
address is found in the cache, the requesting processor will directly read the data from its 
cache, without any Main Memory Module referencing. 

2. If the requested address is not in the Port Cache, the following actions are taken: 

- a) the requested address is delivered to the Data Access Prediction Engine. This will create a 
Predicted Addresses List containing a number of addresses that are predicted to be requested by 
the processor during subsequent cycles.

- b) the Predicted Addresses List is passed to the Main Memory Access Arbiter. Based on a 
certain priority scheme, the Predicted Addresses List will eventually be forwarded to the Main 
Memory Module for effective data retrieval.

- c) the Main Memory Module delivers, on the Parallel Data Channel, a packet containing all 
the locations specified in the Predicted Addresses List, i.e. the actually-requested data, plus the 
predicted-to-be-requested data.

- d) the packet data will be transferred, via the Parallel Data Channel, to all the DAPA Port 
Caches Modules. The cache that originally requested the Main Memory Module access will 
thus be provided with the requested memory location, plus a set of locations that were 
predicted to be requested during subsequent cycles. The requesting Port Cache Module will 
load the entire packet, as it is assumed that further requests for data contained in the packet will 
be issued.

The DAPA mechanism, as described above, provides a way to effectively and efficiently utilize a 
wide-band communication channel; it is based on (1) predicting, at a certain moment in time, a set 
of future memory accesses, (2) requesting an access to all of them in parallel, and (3) assembling 
the data thus accessed on a wide band data bus..

Thus, after a request issued at one of the DAPA ports is served by means of a Main Memory Module 
access cycle, it will be very probable that subsequent requests issued by that port will find the 
requested data readily available in the local Port Cache Memory, thus allowing the Main Memory 
Module to serve other ports’ requests. DAPA-aware compilers can also be very effective in 
improving the predictability of data references.

Architectural variations of DAPA will consider the Data Access Prediction algorithm, the Main 



Memory Access Arbiter priority schemes, the width of the Parallel Data Channel, the size of the Port 
Cache Modules, the size of the Main Memory Module, etc. Also, a direct extension of DAPA as 
presented in Fig.1 is obtained by having the Main Memory Module act as a large Level-2 Cache for 
an even larger External Memory.

The Parallel Vector Access Architectural Solution (DAPA/Vector)

Based on the statistics of data accesses in vector-based applications, a simple and straight-forward 
prediction technique can be derived. The architecture corresponding to this prediction technique is the 
Parallel Vector Access Architecture (DAPA/Vector).

In order to introduce the DAPA/Vector architecture, let us assume a DAPA port, say port#1, is to 
read a vector starting at a certain address in the Main Memory Module (i.e. the port will be requesting 
consecutive addresses inside the vector during subsequent cycles). First, the potential concurrent 
requests to the Main Memory Module coming from other DAPA ports will be resolved by the Main 
Memory Access Arbiter, based on a certain priority rule. Once port#1’s request will be eligible for 
being served, the requested address will be retrieved from the main memory together with the next N-
1 consecutive locations of that vector, and dispatched to port#1’s local cache. Thus, the future N-1 
data requests issued at port#1 will find the data readily available in the port’s cache.

In order to illustrate the way this mechanism reduces Main Memory Module access conflicts, let us 
assume that all N ports in a N-port DAPA will request to read data from N vectors located in the 
Main Memory Module. Let us also assume, for the purpose of this example, that the ports’ local 
caches can only hold N data elements, organized as one N-element cache line. The following steps 
will occur:

1. Assuming that none of the ports’ caches initially contains the requested data, N Main Memory 
Module requests will be pending (one for each port that is requesting data from the main 
memory). The Main Memory Access Arbiter will grant one of the ports’ requests, say port#1, 
based on a certain priority scheme. Thus, the port#1 cache will be filled with N data elements: 
the actually requested data, plus the next N-1 elements in the vector. Consequently, during the 
following N-1 cycles, the data requested at port#1 will be readily available in the port’s cache, 
allowing the Main Memory Access Arbiter to grant other ports’ requests to access the main 
memory. 

2. Let us now assume that, during the second cycle, port#2 will be granted access to the Main 
Memory Module (by the memory access arbiter). The algorithm described for port#1 will be re-
iterated for port#2, resulting in port#2’s cache containing the data it requested, plus the next N-
1 elements of the vector it is about to read. 

3. After the above-described algorithm is completed for each of the N ports, i.e. N cycles since the 
first port#1 Main Memory Module access, the N successive data elements that were stored in 
port#1’s cache will have all been accessed. At this moment in time, a request from port#1 to 
read another vector element will issue a Main Memory Module access request to the Main 
Memory Access Arbiter (as the vector element could not be found in port#1’s local cache). 
However, at this time there will be no other pending Main Memory Module access requests, 
since all the other ports still have the vector elements they need to access in their local caches: 
port#2 still has one un-accessed vector element in its cache, while port#N still has N-1 un-
accessed vector elements in its cache. Consequently, the port#1 request will be served 
immediately, and without stalling the other DAPA ports operation.



Remark on the Number of Data Elements in a Port Cache Module Line

The example presented above describes the way DAPA reduces Main Memory Module access 
conflicts, based on N-element-sized Port Cache Modules (where N is the number of DAPA ports). 
The data was assumed to be organized (in the caches) as one N-element line, that is transferred as a 
packet through the Parallel Data Channel. It can be seen that, for as long as the DAPA ports will each 
be accessing successive elements in the Main Memory Module (each port from a different main 
memory address), an increase in the number of elements in a cache line beyond N will not contribute 
to lowering the number of access conflicts any further (because the conflicts were only occurring at 
the very beginning of the vector accesses, while after the first N cycles no further memory conflicts 
occur). However, if at some point in time, any of the DAPA ports will break the linearity of the 
requested addresses sequence (i.e. start requesting data from a different vector), this will trigger an 
immediate Main Memory Module access request that will conflict with one of the other N-1 ports’ 
requests. This implies an "extra cycle" that should be considered when analyzing the DAPA behavior. 
It can be seen that, in such a case, a local Port Cache line size increase from N to N+1 would 
eliminate the memory conflicts. Furthermore, increasing the cache line sizes to N+M would help 
eliminate the memory conflicts that would occur as a result of having M DAPA ports break the 
linearity of their memory references (however, this is only useful if the break does not occur 
simultaneously on more ports, in which case some conflicts will occur). The conclusion to be derived 
from this remark is that the longer the Port Cache Modules line size, the better the system will 
perform when the ports will switch from accessing one vector in memory to another. However, larger 
line sizes also imply a larger data packet to be retrieved from the Main Memory Module, and a wider 
band Parallel Data Channel. A tradeoff should be found between the two requirements: increasing 
the caches line size and keeping the parallel data channel’s bandwidth within reasonable limits. 
For typical DSP algorithms, a cache line size of 2 to 4 times the number of ports is recommendable 
(further statistical studies on the line size of the caches are currently being conducted).

Remark on the Number of Lines in a Port Cache Module

Although the number of lines in the Port Cache Modules does not significantly influence the 
performance of the DAPA/Vector during pure vector data processing, it will prove to have a strong 
performance impact when more sophisticated algorithms are being run. An example to illustrate the 
importance of having more than one line in the DAPA ports’ local caches is the FFT algorithm. 
During this algorithm, data is accessed from memory using a special addressing sequence, known as 
bit-reverse addressing. The sequence of bit-reverse memory accesses actually translates into a 
succession of interleaved addressing of a pair of vectors. In this case, by providing two lines in the 
Port Cache Modules, it will be possible to maintain the same performance as it was described for the 
pure vector situation (each of the vectors in a pair will be stored in one of the cache lines). More 
generally, by allocating P lines for a port’s local cache, an interleaved addressing of P vectors by 
the corresponding DAPA port will be possible, while maintaining the full DAPA performance level 
as described for the pure vector data addressing. The number of lines in a Port Cache Module should 
be chosen by considering a compromise between the DAPA efficiency and the size of the caches. A 
recommended cache size for most typical DSP algorithms has been found to be 4 to 8 lines (further 
statistical studies on the number of cache lines are currently being conducted).

Remark on Using Potential Main Memory Module Idle Cycles

A DAPA/Vector implementation with the number of elements in a cache line greater than the number 



of ports will allow for Main Memory Module idle cycles to occur, when all the ports are synchronized 
and are accessing successive elements in memory. However, these idle cycles can be used in a multi-
line caches configuration for filling additional Processor Cache Modules lines, based on a certain 
algorithm. For example, it can be chosen that, for each main memory idle cycle, a cache line will be 
pre-fetched in the cache module that has the fewest un-accessed elements left in one if its cache lines 
(and has not been pre-filled). If some conditions are met, this mechanism can totally eliminate the 
overhead implied by having one of the ports break its addressing sequence.

Remark on the Number of Data Access Prediction Engines

The general DAPA architecture, as shown in Fig.1, uses separate Data Access Prediction Engines for 
each of the processor Port Cache Modules, in order to allow for a flexible definition of the prediction 
algorithm corresponding to each of the ports. However, since the DAPA/Vector implements a single 
uniform vector-based prediction scheme for all ports, a unique prediction engine can be placed after 
the Main Memory Access Arbiter, replacing the N separate engines (placed before the arbiter) in 
Fig.1. In this case, the memory access arbiter will select one of the addresses actually requested at the 
DAPA ports (instead of the Predicted Addresses List), and pass it to the Data Access Prediction 
Engine. Based on the received address, the prediction engine will generate the Predicted Addresses 
List, and deliver it to the Main Memory Module for accessing. It can thus be seen that, for the 
DAPA/Vector architecture, the multiple Data Access Prediction Engines as they appear in the 
general form of DAPA can be replaced with a single prediction unit, positioned between the Main 
Memory Access Arbiter and the Main Memory Module.

Remark on the DAPA/Vector Compatibility with Standard Programming Techniques

An important problem to be considered is the way the DAPA/Vector solution meets today’s standard 
programming techniques challenge. It is known that a certain functionality to be implemented by a 
software application is being coded by decomposing it in a number of more elementary sub-
components, usually packed in the form of functions. These functions, in turn, usually consist of 
more sub-components, again packed in the form of functions, and so on. Thus, a typical application 
execution sequence will consist of running pieces of sequential code, packed in functions, and 
occasionally performing function calls and returns. The most common programming methodology 
when coding a function is the use local variables, i.e. variables that are only visible within that 
function; the function receives, and can return, data via its argument list. Another method of passing 
data between the various functions in a program is based on the use of global variables; these 
variables are visible anywhere within the application. It is important to note that, for most of the 
cases, the number of references (made during a function evaluation) to global variables is 
substantially smaller than the number of references to the local variables. The way the local variables 
are stored in memory when a function is called is known as a stack frame structure; this is a linear 
sequence of addresses in memory that hold, successively, the local variables of the functions. Thus, it 
can be seen that the DAPA/Vector model is very well suited for handling stack frame data 
structures, as these consist of vector-arranged data.

DAPA/Vector – A Hardware Approach Example

A possible hardware implementation for the DAPA/Vector architecture is shown if Fig.2. This 
configuration assumes 16 DAPA ports, each 32 bits wide, and 1Mw Main Memory.



Fig.2: DAPA/Vector Hardware Implementation

Following is a brief description of the DAPA/Vector components, as shown in Fig.2.

The Main Memory Module

The main memory is implemented as a 1 Mw block, organized in lines of 1024 bits. Each reference to 
a memory address will actually access a 1024-bit line in the main memory, containing a 32-word data 
vector (composed of 32 successive 32-bit words).

The Port Cache Modules

The ports’ local caches are organized as 6 lines of 1024 bits, i.e. 6 lines of 32-word vectors. The 
cache modules are featured with a 1024-bit bus interface on the Parallel Data Bus side, and with a 32-
bit bus interface on the DAPA ports side. When an access is requested at a DAPA port and the 
requested data is not found in the local port cache, this will cause an entire 1024-bit line (32 words), 
containing the requested 32-bit word, to be transferred between the Main Memory and the Port Cache 
(via the Parallel Data Bus).

The Main Memory Access Arbiter

The access arbiter resolves competing DAPA ports memory requests, that did not find the requested 
data in their local caches, based on a selectable priority scheme (random, rotary, table based, etc). It 
selects a Target Address to be accessed in the main memory.

The Vector Address Generator

The Vector Address Generator accepts the 32-bit word’s Target Address from the access arbiter, and 
calculates (by simply ignoring the least significant bits in the address) the line number in the Main 
Memory Module that contains the requested word-address. The memory reference to the specified 
word-address will access a whole 32-word line.



Conclusions

This paper introduced the Data Access Prediction Architectures (DAPA) concept. It was shown how 
DAPA addresses the problem of limiting the number of conflicts between multiple processors sharing 
a common physical memory. An insight on a Parallel Vector Access architectural solution 
(DAPA/Vector) was given. The benefits and limitations of DAPA/Vector were presented, together 
with the way DAPA/Vector interacts with vector-based applications. The problem of the non-vector-
data portions of typical software applications was also addressed, by presenting the corresponding 
behavior of a DAPA/Vector architecture in such situations. 

It can be concluded that the DAPA/Vector solution is an efficient and effective way of 
implementing a multi-processor shared memory structure, when the processors are known to be 
running calculation-intensive, vector data-based algorithms. The DAPA/Vector multiprocessing 
solution is thus best suited for today’s high-end DSP applications, ranging from multi-channel-
based parallelism, to highly sophisticated algorithms like Voice Recognition, Buffered Image 
Processing, etc.

(C) Information Technology Group
http://www.itgroup.ro

05/15/2000


